Group 13 (IIIA) elements Module 17.1: General introduction, Electronic configuration, Occurrence, Oxidation states of IIIA group

IIIA or 13th group consists of 5 elements namely Boron, Aluminium, Gallium, Indium and Thallium. This group elements show a wide variation in properties. Boron is a typical non - metal, Aluminium is a metal but shows many chemical similarities to boron. Gallium, Indium and Thallium are almost exclusively metallic in character. Boron differs in many respects from the physical and chemical characters of other elements of the group.

Occurrence:

Boron is a fairly rare element, mainly occurs as ortho boric acid (H_3BO_3), borax ($Na_2B_4O_7.10H_2O$) and Kernite ($Na_2B_4O_7.4H_2O$). Boron occurs in two isotopic forms ¹⁰B (19%) and ¹¹B (81%). The abundance of boron in the earth's crust is less than 0.0001% by mass. Aluminium is the most abundant metal and the third most abundant element in earth's crust (8.3% by mass) after oxygen (45.5%) and silicon (27.7%). Bauxite ($AI_2O_3.2H_2O$) and cryolite Na_3AIF_6 are the important minerals of aluminium. Gallium, Indium and Thalium are less abundant elements in nature. Gallium, Indium and Thalium occur in traces along with the sulphide ores of Zinc and lead.

Minerals of 13th group:

SNO	Name of the Mineral	Formula	
	Borax	Na2B407.10H20	
1	Kemite (or)Razorite	Na2B, O7.4H2O	
	Boricacid	H ₃ BO ₃	
	Colemanite	Ca ₂ B ₆ O ₁₁ .5H ₂ O	
	Corundum	Al ₂ O ₃	
	Diaspore	A1 ₂ O ₃ .H ₂ O	
	Bauxite	A12O3.2H2O	
2	Gibbsite	A1203.3H20	
	Cryolite	Na ₃ AlF, (or)	
		3NaF.A1F3	
	Felspar	KA1Si3O8	
3	Ga, In, Tl occur as sulphides Ga is found the ores of Zn, Al, and Ge.In and Tl occurs along with Zns (Zinc blende) and galena PbS		

Electronic configuration:

General electronic configuration of these elements is ns^2np^1 as these elements have 3 electrons in the outermost orbit. Because of similarity in electronic configuration of outermost shell they closely resemble in their physical and chemical properties. The penultimate shell of Boron has s^2 electrons, aluminium has s^2p^6 and other 3 elements have $s^2p^6d^{10}$ electrons. Thus Boron is expected to differ from aluminium and other elements of the group.

Element	Atomic. No	Electronic configuration
Boron (B)	5	1s ² 2s ² 2p ¹
Aluminium (Al)	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
Gallium (Ga)	31	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ¹
Indium (In)	49	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6}4d^{10}5s^{2}5p^{1}$

Thallium (Tl)	81	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 6s ² 6p ¹
---------------	----	--

An examination of electronic configuration suggests that while Boron and Aluminium have noble gas core, Gallium and Indium have noble gas plus 10 delectrons and Thallium has noble gas plus 14 f-electrons plus 10 d-electrons cores.

Oxidation states:

Due to small size of boron, the sum of its first three ionization enthalpies is very high. This prevents it from +3 ions and forces it to form only covalent compounds. But as we move from B to Al, the sum of the first three ionization enthalpies of Al considerably decreases and is therefore able to form Al³⁺ ions. In fact Al is highly electropositive metal. However, down the group, due to poor shielding effect of intervening **d** and **f** orbitals, the increased effective nuclear charge holds **ns** electrons tightly (responsible for inert pair effect) and thereby, restricting their participation in bonding. As a result of this only p-orbital electron may be involved in bonding. In fact in Ga , In and Tl , both +1 and +3 oxidation states are observed. The relative stability of +1 oxidation state progressively increases for heavier elements: AI < Ga < In < TI. In thallium +1 oxidation state is predominant whereas the +3 oxidation state is highly oxidizing in character. Tl (+1) compounds are more stable than that of TI (+3). This is due to the fact that the 2s electrons in the outer shell tend to remain paired and do not participate in compound formation (Inert pair effect). The compounds in +1 oxidation state, as expected from energy considerations, are more ionic than those in +3 oxidation state.

Ga, In and TI show inert pair effect in their compounds. In fact TI (+1) salts resemble alkali metals because it has large size and low oxidation state.

Assignment Questions:

1. What are the elements present in the group 13 of the periodic table. Write their names in the order.

- 2. Write the atomic numbers and the electronic configurations of all the elements in 13th group in the periodic table.
- 3. How do the elements of group 13 occur in nature? Write the minerals of B and Al.
- 4. Explain the oxidation states of group 13 elements. Discuss the stability of +3 oxidation state in the group.
- 5. Write a brief note on the oxidation states of boron family of elements.

SAQs:

- 1. The general electronic configuration of the 13th group elements is _____
 - a. $ns^2 np^1$
 - b. $ns^2 (n-1) d^9 np^2$
 - c. ns²np²
 - d. $ns^1 (n 1) d^{10} np^2$

Solution: a)

- 2. the chemical formula of borax is
 - a. Na₂B₄O₇.10H₂O
 - b. Na₂B₄O₇
 - c. $Ca_2B_6O_{11}$
 - d. Na₂B₄O₇.4 H₂O

Solution: a)

- 3. The most abundant metal in the earth's crust is _____
 - a. In
 - b. Al
 - c. Ga
 - d. B

Solution: b)

- 4. The common oxidation state of Tl is _____
 - a. +3
 - b. + 2
 - c. +1
 - d. +5

Solution: c)

LAQs:

1. Write a note on the electronic configuration of elements of 13th group.

Solution:

Element	Atomic. No	Electronic configuration
Boron (B)	5	1s ² 2s ² 2p ¹
Aluminium (Al)	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
Gallium (Ga)	31	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{1}$
Indium (In)	49	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6}4d^{10}5s^{2}5p^{1}$
Thallium (Tl)	81	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 6s ² 6p ¹

2. Which of the Boron family elements is the most abundant? Mention the minerals of boron and aluminium.

Solution:

Aluminium is the most abundant metal. It is the 3rd most abundant element (1st is oxygen, 2nd is silicon) by weight

Boron is a fairly rare element, mainly occurs as ortho boric acid (H_3BO_3), borax ($Na_2B_4O_7.10H_2O$) and Kernite ($Na_2B_4O_7.4H_2O$). Bauxite ($Al_2O_3.2H_2O$) and cryolite Na_3AlF_6 are the important minerals of aluminium.

3. Discuss the 13th group elements with reference to their oxidation states.

Solution:

Oxidation states:

Due to small size of boron, the sum of its first three ionization enthalpies is very high. This prevents it from +3 ions and forces it to form only covalent compounds. But as we move from B to Al, the sum of the first three ionization enthalpies of Al considerably decreases and is therefore able to form Al³⁺ ions. In fact Al is highly electropositive metal. However, down the group, due to poor shielding effect of intervening **d** and **f** orbitals, the increased effective nuclear charge holds **ns** electrons tightly (responsible for inert pair effect) and thereby, restricting their participation in bonding. As a result of this only p-orbital electron may be involved in bonding. In fact in Ga, In and Tl, both +1 and +3 oxidation states are observed. The relative stability of +1 oxidation state progressively increases for heavier elements: AI < Ga < In < TI. In thallium +1 oxidation state is predominant whereas the +3 oxidation state is highly oxidizing in character. Tl (+1) compounds are more stable than that of TI (+3). This is due to the fact that the 2s electrons in the outer shell tend to remain paired and do not participate in compound formation (Inert pair effect). The compounds in +1 oxidation state, as expected from energy considerations, are more ionic than those in +3 oxidation state.

Ga, In and TI show inert pair effect in their compounds.

In fact TI (I) salts resemble alkali metals because it has large size and low oxidation state.

Problem set:

- 1. An element of 13th group with no d–electrons in it is _____
 - a. Tl
 - b. In
 - c. Al
 - d. Both a) and b)

Solution: c)

- 2. Cryolite is represented by
 - a. $Na_2B_4O_7.10 H_2O$
 - b. Na₃ AlF₆
 - c. 3 NaF.AlF₃
 - d. Both b) and c)

Solution: d)

- 3. Razorite has the same molecular formula as that of
 - a. Borax
 - b. Kernite
 - c. Bauxite
 - d. Cryolite

Solution: b) Na₂B₄O₇.4 H₂O

- 4. Justify the inclusion of B, Al, Ga, In and Tl in the same group of the periodic table with reference to
 - a. Electronic configurations
 - b. Oxidation states.

Solution:

a. Electronic configurations:

Element	Atomic. No	Electronic configuration
Boron (B)	5	1s ² 2s ² 2p ¹
Aluminium (Al)	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
Gallium (Ga)	31	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ¹
Indium (In)	49	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6}4d^{10}5s^{2}5p^{1}$
Thallium (Tl)	81	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 6s ² 6p ¹

b. Oxidation states:

These elements have +3 oxidation state due to the presence of 3 electrons in the valency shell, except Boron and Aluminium. These elements also show stable +1 oxidation state as one move down the group, due to inert pair effect. +1 oxidation state becomes more stable down the group thus TI (+1) compounds are more stable than that of TI (+3). This is due to the fact that the 2s electrons in the outer shell tend to remain paired and do not participate in compound formation (Inert pair effect). Ga, In, TI can show inert pair effect in their compounds. In fact TI (I) salts resemble alkali metals because it has large size and low oxidation state.

4. The elements of the Boron family occur in the combined state only. Give the names and the formulas of the minerals of boron family.

SNO	Name of the Mineral	Formula			
	Borax	Na2B+07.10H20			
1	Kemite (or) Razorite	Na ₂ B ₄ O ₇ .4H ₂ O			
	Bonicacid	H ₃ BO ₃			
	Colemanite	Ca ₂ B ₆ O ₁₁ .5H ₂ O			
	Corundum	Al ₂ O ₃			
	Diaspore	A1 ₂ O ₃ .H ₂ O			
_	Bauxite	A12O3.2H2O			
2	Gibbsite	A1203.3H20			
	Cryolite	Na ₃ AlF, (or)			
		3NaF.A1F3			
	Felspar	KA1Si3O8			
	Ga, In, Tl occur as sulphides Ga is found the ores of				
3	Zn, A1, and Ge.In and T1 occurs along with Zns				
	(Zinc blende) and galena Pb;	5			

Solution:

Exercise questions:

- 1. Why are the elements B, Al, Ga, In and Tl included in the same group of the periodic table? Justify their inclusion with reference to their hydrides, and oxides
- 2. How Boron does differ from other elements of the group? Discuss.

Solutions:

Group 13 (IIIA) elements Module 17.4: Boron hydrides

Boranes are the hydrides of boron. It is important to note that Boron does not form simple monomeric hydride i.e., BH_3 although boron hydrides are well known and quite stable compounds. Actually when BH_3 molecules come in contact with each other, they combine to form diborane, B_2H_6 . Thus BH_3 can exist only as complex compounds like BH_3Z with donors (Z) like CO, (CH₃)₃N, PF₃. The hydrides of boron can be compared with hydrocarbons. These are all electron deficient compounds.

Based on their molecular formula Boron hydrides are classified in to 2 types.

i. Those with general formula B_nH_{n+4} . These are quite stable and hence are more important. These are commonly known as boranes.

Example:

B ₂ H ₆ (diborane)	B₅H ₉ (pentaborane – 9)
B ₆ H ₁₀ (hexaborane -10)	B ₈ H ₁₂ (octaborane – 12)
$B_{10}H_{14}$ (decaborane – 14)	

ii. Those with general formula B_nH_{n+6}

These are unstable and have low melting points. These are known as hydroboranes.

Example:

 B_4H_{10} (Tetraborane – 10), B_5H_{11} (Pentaborane – 11), B_6H_{12} (Hexaborane – 12)

The numbers suffixed with the names indicate the number of hydrogen atoms present in a molecule of the hydride. By this the confusion that might arise in the nomenclature of these compounds can be overcome.

For example B_6H_{10} and B_6H_{12} are both hexaboranes only. To differentiate them the number of hydrogen atoms in them is indicated.

Of the hydrides of boron, diborane is the most common are Diborane

Preparation:

It is prepared by treating boron triflouride with LiAlH₄ in diethyl ether.

$$4BF_3 + 3LiAIH_4 \longrightarrow 2B_2H_6 + 3LiF + 3AIF_3$$

A convenient laboratory method for the preparation of diborane involves the oxidation of sodium borohydride with iodine

$$2NaBH_4 + I_2 \longrightarrow B_2H_6 + 2NaI + H_2$$

Diborane is produced on an industrial scale by the reaction of BF_3 with sodium hydride.

 $2BF_3 + 6NaH \xrightarrow{450K} B_2H_6 + 6NaF$

A mixture of Boron Trichloride and hydrogen is subjected to silent electric discharge. Diborane is produced.

 $2BCI_3 + 6H_2 \quad \xrightarrow{Electric discharge}{Or cu - Al catalyst at 450°C} \Rightarrow B_2H_6 + 6HCI$

Diborane can also be prepared by the action of dilute $\mathsf{H}_2\mathsf{SO}_4$ on sodium-borohydride

$$2NaBH_4 + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2 + B_2H_6$$

Physical properties:

Diborane is a colorless gas with a foul smell and is extremely toxic. Boiling point of Diborane is 180K. At low temperatures in the absence of moisture and grease, it is stable. At ordinary temperatures it undergoes dissolution and gives other hydrides of Boron

Chemical properties:

Diborane catches fire spontaneously upon exposure to air. It burns in oxygen releasing an enormous amount of energy. Hence these are used as rocket fuels.

$$B_2H_6 + 3O_2 \longrightarrow B_2O_3 + 3H_2O$$

Action of heat:

All boron hydrides decompose at red heat to boron and hydrogen

$$B_2H_6 \xrightarrow{>100^{\circ}C} 2B + 3H_2$$

Hydrolysis:

Boranes are readily hydrolised by water to give boric acid. Therefore these are used as reducing agents.

$$B_2H_6(g) + 6H_2O(I) \longrightarrow 2B(OH)_3(aq) + 6H_2(g)$$

Action of alkalies:

When treated with alkali, it forms hypoborates, metaborates

$$B_2H_6 + 2KOH + 2H_2O \longrightarrow 2KBO_2 + 6H_2$$

Action with Ammonia:

Reaction of Ammonia with diborane gives initially $B_2H_6.2NH_3$ which is formulated as

 $[BH_2(NH_3)_2]^+[BH_4]^-$

Further heating gives borazine (or) borazole $B_3N_3H_6$, known as inorganic benzene. In view of its ring structure with alternate BH and NH groups, that is similar to benzene it is known as inorganic benzene.

Action of halogens:

Diborane reacts with halogens (except I₂) and gives different products.

 $B_2H_6 + 6Cl_2 \xrightarrow{at 25^{\circ}c} 2BCl_3 + 6HCl$

 $B_2H_6 + Br_2 \xrightarrow{at \ 100^{\circ}c} B_2H_5Br + 4Br$

Carbon monoxide reacts with diborane at 1000^oc at 2 atm pressure to give borane carbonyl.

$$B_2H_6+2CO \longrightarrow 2[BH_3.CO]$$

Reducing agent:

Diborane also acts as a powerful reducing agent for some functional groups

RCHO
$$\xrightarrow{(B_2H_6)}$$
 RCH₂OH
RCN $\xrightarrow{(B_2H_6)}$ RCH₂NH₂

Reaction with Olefins:

Diborane readily adds at O^oc to 25^oc to the olefinic or acetylenic compound to form trialkyl boranes. The reaction is known as hydroboration.

 $\begin{array}{c} \mathsf{CH}_2.\mathsf{CH}_3\\ \mathsf{6CH}_2=\mathsf{CH}_2+\mathsf{B}_2\mathsf{H}_6 \xrightarrow{\mathsf{ether}} 2\mathsf{CH}_3\mathsf{CH}_2-\mathsf{B}-\mathsf{CH}_2.\mathsf{CH}_3\\ \mathsf{ethylene} & \mathsf{Triethyl \ borane} \end{array}$

Diborane undergoes cleavage reactions with Lewis bases (L) to give borane adducts, BH₃.L

$$B_2H_6 + 2NMe_3 \rightarrow 2BH_3.NMe_3$$

Structure of Diborane:

Diborane is an example of electron deficient molecules. In these molecules the no. of electrons sufficient for formation of all covalent bonds is not available. Therefore a peculiar situation arises. Each Boron atom is B₂H₆ contributes three electrons and each hydrogen atom contributes one electron for the bond formation. That means 12 electrons are available. They can form 6 covalent bonds only. If diborane has to have ethane like structure 14 electrons are necessary.

$$\begin{array}{cccc} H & H & H & H & H \\ H - C - C - H & H - B - B - H \\ H & H & H & H \\ Ethane & Diborane \end{array}$$

Electron diffraction studies have shown that diborane contains two coplanar BH₂ groups. From this the structure of diborane can be represented as follows.

B – B bond length	1.77A ⁰
B – H bridge bond length	1.33A ⁰
B – H terminal bond length	1.19A ⁰
H terminal BH term Bond angle	121.5 ⁰
H bridge BH Bridge Bond angle	97 ⁰

The 4 hydrogen atoms (represented by H_t) present in BH_2 groups are known as terminal hydrogen atoms. The remaining two hydrogen (represented by H_b) atoms are called as bridge hydrogens because they link the two BH_2 groups in the molecule. One of the bridge hydrogens lies above the plane and the other one lies below the plane.

Nature of Bonds in Hydrogen Bridge:

Boron atom undergoes sp³ hybridization resulting in 4 equivalent orbitals, three of these orbitals have one electron each and 4th hybrid orbital is vacant. In forming the B – H – B bridge sp³ hybrid orbital with one electron each and 4th hybrid orbital is vacant. In forming the B – H – B bridge sp³ hybrid orbital with one electron from one Boron atom, is orbital of one bridge hydrogen and the vacant sp³ hybrid orbital of the 2nd boron atom overlap as shown in the figure.

Overlap of orbitals is B_2H_6 – Banana bond. The 2 B – H – B bridges present in diborane are abnormal bonds. They are considered as 3 centered 2 electron bonds.

Due to repulsion between the two hydrogen nuclei the delocalized orbitals of bridges are bent away from each other in the middle giving the shape of banana. Thus the 3 centre – 2 electron bonds are also known as banana bonds. In this type of bond a pair of electrons holds 3 atoms together.

In diborane there are two such bridges. Thus diborane molecule has four 2 – centre – 2 electron bonds and two 3 – centre 2 – electron bonds.

Evidences for the structure of diborane:

The 1st experimental evidence in favour of the structure of diborane came in 1951 from the electron diffraction measurement, further supported by measurement of the Raman and infra – Red spectra. The physical devices revealed the following points. All of these favour the bridge type structure for diborane.

- 1. The 2 boron atoms and 4 terminal hydrogen atoms lie in the same plane, the 2 bridging hydrogen atoms are in a plane perpendicular to the rest of the molecule and prevent rotation about the 2 boron atoms. The presence of 2 types of boron hydrogen bonds is confirmed by the chemical evidence that only four of the hydrogen atoms of the diborane molecule are replaceable by methyl groups. Any attempt to effect further substitution results in cleavage of the molecule in to two fragments. Each containing one boron atom.
- 2. The bond distances and bond angles are consistent with the two types of hydrogen atoms
- 3. Tetramethyl diborane is not found to possess any terminal hydrogen atom.

Assignment questions:

- 1. Discuss the physical properties of diborane.
- 2. Write all the chemical reactions of B_2H_6
- 3. Discuss the structure of diborane.

SAQs:

- 1. The hydrides of boron are called as _____
 - a. Boranes
 - b. Boron hydrides
 - c. Borazine
 - d. Both a) and b)

Solution: d)

- 2. The general formula for boron hydrides is,
 - a. B_nH_{n+4}
 - b. B_nH_{n+6}
 - c. B_nH_{n+5}
 - d. Both a) and b)

Solution: d)

3. Predict the product for the following reaction:

 $2BF_3 + 6NaH \xrightarrow{450K} ? + NaF$

- a. NaBH₄
- b. BH₃
- c. B_2H_6
- d. $NaBF_4$

Solution: c)

- 4. Inorganic benzene is
 - a. Borazole

- b. Borazine
- c. $B_3N_3H_6$
- d. All the above

Solution: d)

- 5. diborane molecule has
 - a. four 2 centre 2 electron bonds and two 3 centre 2 electron bonds.
 - b. three 2 centre 2 electron bonds and two 3 centre 2 electron bonds.
 - c. four 2 centre 2 electron bonds and one 3 centre 2 electron bonds.
 - d. two 2 centre 2 electron bonds and two 3 centre 2 electron bonds.

Solution: a)

Example set:

- 1. from B_2H_6 , the following can be prepared:
 - a. B_2O_3
 - b. H₃BO₃
 - c. NaBH₄
 - d. All of these

Solution: d)

- 2. The hybridization of boron in diborane is:
 - a. sp
 - b. sp²
 - c. sp³
 - d. dsp²

Solution: c)

- 3. Which of the following is an electron deficient compound?
 - a. C_2H_6
 - b. SiH_4
 - c. PH_3

d. B₄H₁₀

Solution: d)

- 4. Which of the following is correct?
 - a. the members of B_nH_{n+6} are less stable than B_nH_{n+4} series
 - b. diborane is an unstable coloured compound at room temperature
 - c. the reaction of diborane with oxygen is endothermic
 - d. all of these

Solution: a)

LAQs:

1. Write a note on classification of boranes.

Solution:

Boranes are the hydrides of boron.

Based on their molecular formula Boron hydrides are classified in to 2 types.

i. Those with general formula B_nH_{n+4} . These are quite stable and hence more important. These are commonly known as boranes.

Example:

B ₂ H ₆ (diborane)	B₅H ₉ (pentaborane – 9)
B ₆ H ₁₀ (hexaborane -10)	B ₈ H ₁₂ (octaborane – 12)
B ₁₀ H ₁₄ (decaborane – 14)	

ii. Those with general formula $\mathsf{B}_n\mathsf{H}_{n+6}$

These are unstable and have low M.Ps. These are called hydroboranes.

Example:

 B_4H_{10} (Tetraborane – 10), B_5H_{11} (Pentaborane – 11), B_6H_{12} (Hexaborane – 12)

- 2. How do you prepare B_2H_6 using the following reactions?
 - a. LiAlH₄
 - b. NaBH₄
 - c. BCl₃

Solution:

a. B_2H_6 is prepared by treating boron triflouride with LiAlH₄ is diethyl ether.

 $4BF_3 + 3LiAIH_4 \longrightarrow 2B_2H_6 + 3LiF + 3AIF_3$

b. Diborane can also be prepared by the action f dilute H_2SO_4 on sodium-borohydride

 $2NaBH_4 + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2 + B_2H_6$

c. A mixture of Boron Trichloride and hydrogen is subjected to silent electric discharge. Diborane is produced.

 $2BCI_3 + 6H_2 \quad \xrightarrow{Electric discharge}{Or cu - Al catalyst at 450°C} \quad B_2H_6 + 6HCI$

Problem set:

- 1. In B₂H₆:
 - a. There is direct boron-boron bond
 - b. The boron atoms are linked through hydrogen bridges
 - c. All the B H bond distances are equal
 - d. All the atoms are coplanar.

Solution: b)

- 2. Which hydride does not exist in nature?
 - a. BH₃
 - b. $(AIH_3)_n$
 - c. B₂H₆

d. B_4H_{10}

Solution: a)

- 3. Which one of the following is not a borane Formula?
 - a. B₅H₉
 - b. B_5H_{10}
 - c. B₅H₁₁
 - d. B_6H_{10}

Solution: b)

- In which of the following a salt of the type KMO₂ is obtained (Where H = Boron atom)
 - a. B_2H_6 + KOH (aq) \rightarrow
 - b. $B_2O_3 + NH_3 \rightarrow$
 - c. B_2H_6 + KCl (aq) \rightarrow
 - d. All of these

Solution: a)

- 5. Write down the chemical properties of B_2H_6 with the following
 - a. Action of alkali
 - b. Reaction with NH_3
 - c. Action of heat
 - d. Action with olefines

Solution:

a. Action of alkalies:

When treated with an alkali it forms hypoborates, metaborates

 $B_2H_6 + 2KOH + 2H_2O \longrightarrow 2KBO_2 + 6H_2$

b. Action with Ammonia:

Reaction of Ammonia with diborane gives initially $B_2H_6.2NH_3$ which is formulated as

$$[BH_2(NH_3)_2]^+[BH_4]^-$$

Further heating gives borazine (or) borozole $B_3N_3H_6$, known as inorganic benzene. In view of its ring structure with alternate BH and NH groups that is similar to benzene it is known as inorganic benzene.

c. Action of heat:

All boron hydrides decompose at red heat to boron and hydrogen

$$B_2H_6 \xrightarrow{>100^{\circ}C} 2B + 3H_2$$

d. Reaction with Olefins:

Diborane readily adds at O^oc to 25^oc to the olefinic or acetylenic compound to form trialkyl boranes. The reaction is known as hydroboration.

$$6CH_2=CH_2 + B_2H_6 \xrightarrow{ether} 2CH_3CH_2 - B - CH_2.CH_3$$

ethylene Triethyl borane

6. Discuss the structure of diborane.

Solution:

Structure of Diborane:

Diborane is an example of electron deficient molecules. In these molecules the no. of electrons sufficient for formation of all covalent bonds is not available. Therefore a peculiar situation arises. Each Boron atom is B₂H₆ contributes three electrons and each hydrogen atom contributes one electron for the bond formation. That means 12 electrons are available. They can form 6 covalent bonds only. If diborane has to have ethane like structure 14 electrons are necessary.

Electron diffraction studies have shown that diborane contains two coplanar BH₂ groups. From this the structure of diborane can be represented as follows.

B – B bond length 1.77A⁰
B – H bridge bond length 1.33A⁰
B – H terminal bond length 1.19A⁰

H terminal BH term Bond angle 121.5[°]

H bridge BH Bridge Bond angle 97⁰

The 4 hydrogen atoms (represented by H_A) present. BH_2 groups are known as terminal hydrogen atoms. The remaining two hydrogen (represented by H_b) atoms are called as bridge hydrogens because they link the two BH_2 groups in the molecule. One of the bridge hydrogens lies above the plane and the other one lies below the plane.

Exercise questions:

- 1. What is inorganic benzene? Why is it so called? How will you get it from diborane?
- 2. Write a reason for diborane for being used as a rocket fuel.
- 3. Write a note on banana bond.
- 4. Explain the nature of bonds in diborane.

Solutions:

1. Borazine (or) borozole (B₃N₃H₆) is known as inorganic benzene, in view of its ring structure with alternate BH and NH groups. It is so called because its structure is similar to that of benzene.

At lower temperature, diborane reacts with ammonia to form an addition compound

2. Diborane catches fire spontaneously upon exposure to air. It burns in oxygen releasing an enormous amount of energy. Hence these are used as rocket fuels.

$$B_2H_6 + 3O_2 \longrightarrow B_2O_3 + 3H_2O$$

- 3. Overlap of orbitals in B_2H_6 is Banana bond. The 2 B H B bridges present in diborane are abnormal bonds. They are considered as 3 centered 2 electron bonds.
- Due to repulsion between the two hydrogen nuclei the delocalized orbitals of bridges are bent away from each other in the middle giving the shape of banana. Thus the 3 centre – 2 electron bonds are also known as **banana bonds**. In this type of bond a pair of electrons holds 3 atoms together.
- 5. Nature of Bonds in hydrogen bridge:

Boron atom undergoes sp³ hybridization resulting in 4 equivalent orbitals. 3 of these orbitals have one electron each and 4th hybrid orbital is vacant. In forming the B – H – B bridge sp³ hybrid orbital with one electron each and 4th hybrid orbital is vacant. In forming the B – H – B bridge sp³ hybrid orbital with one electron each and 4th one electron from one Boron atom, is orbital of one bridge hydrogen and the vacant sp³ hybrid orbital of the 2nd boron atom overlap as shown in the figure.

Group 14 elements

Module 18.1: Introduction to group 14 elements (Carbon family)

Introduction:

Carbon (C), Silicon (Si), Germanium (Ge), Tin [latin name: Stannum] (Sn) and Lead [latin name: Plumbum] (Pb) and ununquadrium (recently named as Flerovium)(Fl) are the members of group 14. The six elements constitute a family known as carbon family.

Carbon is the seventeenth most abundant element by mass in the earth's crust. It is widely distributed in nature in Free State as well as in the combined state. In elemental state it is available as coal, graphite and diamond. In combined state it is present as carbonates of metals, as hydrocarbons and as carbon dioxide gas in air etc. It is an essential constituent of all living matter. It is present in them as proteins, carbohydrates and fats. CO_2 is essential for photosynthesis. There is no organic chemistry without carbon containing compounds. The fields of organometallic compounds, carbides and π -complexes are fast developing. We can emphatically say that carbon is the most versatile element in the world.

Silicon is the second most abundant element on earth's crust (27.7% by mass) and is present in the nature in the form of silica or silicates.

It is a very important component of ceramics, glass, cement and silicones. In microelectronic industries (*Ex:* transistors, computer chips) very pure silicon is required.

Germanium occurs only in traces, but tin and lead are very common elements. Tin occurs mainly as cassiterite (SnO₂) and lead as galena (PbS). They have easy extraction methods and many uses.

Electronic configuration:

The group 14 elements are called carbon family. These are the elements of pblock. The electronic configurations of these elements are represented by the general formula $ns^2 np^2$. The configurations are represented in the table given below.

S.No	Name of the element	Symbol	Atomic number	Electronic configuration
1	Carbon	С	6	$1s^2 2s^2 2p^2$
2	Silicon	Si	14	$1s^2 2s^2 2p^6 3s^2 3p^2$
3	Germanium	Ge	32	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$
4	Tin	Sn	50	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^2 \\$
5	Lead	Pb	82	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 5d^{10} 6s^2 6p^2$
6	Flerovium	Fl	114	$\frac{1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 5d^{10} 5f^{14} 6s^2 6p^6}{6d^{10} 7s^2 7p^2}$

Electronic configurations of group 14 elements:

The inner core of each of the electronic configurations of elements in this group differs. C has only's' electrons. Silicon has's' and 'p' electrons in their penultimate shells. But in Ge, Sn, Pb d-electrons are also present in their respective penultimate shells. Because of this difference in electronic configurations, **C** and **Si** are different from other elements of this group.

Occurrence:

All the elements are present abundantly in nature except germanium. Carbon and silicon are widely distributed compared to tin and lead. They occur in the earth's crust to the extent of C = 0.032%, Si = 27.12 %, Ge = $7.0X10^{-4}$ %, Sn = $4X10^{-3}$ % and Pb = $1.6x10^{-3}$ %. The last member, Flerovium (FI) is recently discovered element. It is synthetic, radioactive and unstable element. Not much is known about its properties.

The natural sources of group 14 elements are:

Elements	Source	Formula of the substance available
C	Graphite, diamond, CO ₂ ,CO,Coal,	
J	Crude oil, Carbonates in rocks	
ci	Silica, sand, quartz, Silicate	SiO ₂ , [Al ₂ (OH) ₄ Si ₂ O ₅],
51	minerals, clays, kaolin, Feldspar	[NaAl ₂ (SiO ₃) ₄ .H ₂ O]
Go	Some silver and zinc ores, some	
66	types of coal.	
Sn	Casitterite (or) Tinstone	SnO ₂
Pb	Galena, Cerussite, anglesite	PbS, PbCO ₃ , PbSO ₄ .

Assignment questions:

- 1. Write the electronic configurations of all the elements of 14th group.
- 2. What are the different sources of 14th group elements?

SAQs:

- 1. Carbon is _____ most abundant element by mass in the earth's crust.
 - a. 5th
 - $b. \ 10^{th}$
 - $c. \ 17^{th}$
 - $d. 8^{th}$

Solution: c)

- 2. Silicon is the important component of,
 - a. Ceramics
 - b. Glass
 - c. Silicones
 - d. All of these

Solution: d)

- 3. 14th group elements are ----- block elements
 - a. s

b. p

- c. d
- d. f

Solution: b)

- 4. The general electronic configuration of carbon family of elements is,
 - a. ns²np⁵
 - b. ns^2
 - c. ns²np¹
 - d. ns^2np^2

Solution: d)

- 5. occurrence of carbon in the earth's crust is
 - a. 0.3 %
 - b. 0.032 %
 - c. 0.5 %
 - d. 0.2 %

Solution: b)

- 6. The Latin name of Tin is,
 - a. Plumbum
 - b. Stibium
 - c. Stannum
 - d. Scandium

Solution: c)

- 7. In elemental state, carbon is available as,
 - a. Graphite
 - b. Diamond
 - c. Coal
 - d. All the above

Solution: d)

8. Pure silicon is used in

- a. Transistors
- b. Computer chips
- c. Paper industry
- d. Both a) and b)

Solution: d)

9. Write down electronic configurations of 14th group elements

S.No	Name of the element	Symbol	Atomic number	Electronic configuration
1	Carbon	C	6	$1s^22s^22p^2$
2	Silicon	Si	14	$1s^2 2s^2 2p^6 3s^2 3p^2$
3	Germanium	Ge	32	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$
4	Tin	Sn	50	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^2 \\$
5	Lead	Pb	82	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6}4d^{10}5s^{2}5p^{6}5d^{10}6s^{2}6p^{2}$

Solution:

10. Give a brief note on occurrence of 14th group elements.

Solution:

All the elements are present abundantly in the nature except germanium. Carbon and silicon are widely distributed compared to tin and lead. They occur in the earth's crust to the extent of C = 0.032%, Si = 27.12 %, Ge = $7.0X10^{-4}$ %, Sn = $4X10^{-3}$ % and Pb = $1.6x10^{-3}$ %

Problem set:

- 1. Cassiterite is an ore of _____
 - a. Si
 - b. Sn
 - c. Pb

d. Ge

Solution: b)

- 2. The atomic number of lead is,
 - a. 50
 - b. 80
 - c. 82
 - d. 52

Solution: c)

- 3. Cerussite is chemically
 - a. PbS
 - b. SnO_2
 - c. SiO₂
 - d. PbCO₃

Solution: d)

4. Give the natural sources of 14th group elements.

Solution:

Elements	Source	Formula of the substance available
С	Graphite, diamond, CO ₂ ,CO,Coal,	
	Crude oil, Carbonates in rocks	
Si	Silica, sand, quartz, Silicate	SiO_2 , [Al ₂ (OH) ₄ Si_2O_5],
	minerals, clays, kaolin, Feldspar	$[NaAl_2(SiO_3)_4.H_2O]$
Ge	Some silver and zinc ores, some	
	types of coal.	
Sn	Casitterite (or) Tinstone	SnO ₂
Pb	Galena, Cerussite anglesite	PbS, PbCO ₃ ,PbSO ₄ .

5. Carbon and silicon show differences from other elements of 14th group. Why?

Solution:

The inner core of each of the electronic configurations of elements in this group differs. C has only's' electrons. Silicon has's' and 'p' electrons in their respective penultimate shells. But in Ge, Sn, and Pb d-electrons are also present in their penultimate shells. Because of this difference in electronic configurations, C and Si are different from other elements of this group.

Exercise questions:

- 1. Write the formulae of the following.
 - a. Butter of tin
 - b. White lead
 - c. Red lead
 - d. Sugar of lead
 - e. Litharge
 - f. Carborundum
 - g. Phosgene
 - h. Chrome yellow
 - i. Water glass
 - j. Dry cold (or) dry ice

Solutions:

- 1.
- a. SnCl₄.5H₂O (Stannic chloride)
- b. 2 PbCO₃.Pb(OH)₂ (Basic lead carbonate)
- c. Pb₃O₄ (Tri lead tetra oxide)
- d. $Pb(CH_3COO)_2$ (Lead acetate)
- e. PbO (Lead monoxide)
- f. SiC (Silicon carbide)
- g. COCl₂ (Carbonyl chloride)
- h. PbCrO₄ (Lead chromate)
- i. Na₂SiO₃ (Sodium silicate)
- j. CO₂ (Carbon dioxide in solid sate)

Group 14 elements

Module – 18.4: Allotropic forms of carbon

Allotropes of carbon:

"The phenomenon of the existence of an element in different physical forms but possessing similar chemical characteristics" is known as allotropy. The different forms of the elements are known as **allotropes** or **allotropic modifications**. These allotropes result from the different arrangements of atoms of the elements. Carbon exists in many allotropic forms.

Crystalline carbon:

Diamond and graphite are the two most important crystalline forms of carbon. Because of the difference in the arrangement of atoms and the bonding nature, these two allotropes differ in their physical and chemical properties. A third form of carbon was discovered by H. W. Kroto, E .Smalley and R. F. Curl were awarded the Nobel Prize in 1996.

Diamond:

Each carbon undergoes sp³ hybridization. A carbon atom is bonded to four other carbon atoms arranged in tetrahedral symmetry with single bonds. Its polymeric structure extends in space and produces a rigid three - dimensional network of

carbon atoms. In this structure directed covalent bonds are present throughout the lattice.

Structure of Diamond

Properties:

- 1. Very hard substance, difficult to break due to extended covalent bonds
- 2. High melting point 3927 ^oC
- 3. C C bond energy is very high (348 kJ mol⁻¹)
- 4. Non conductors due to the lack of lone electrons or electron pairs
- 5. C C bond length is 1.54 A^0 or 0.154 nm.
- 6. \angle CCC bond angle 109⁰ 28¹
- 7. Transparent to x- rays
- 8. High refractive index
- 9. The value of diamond is measured in carats. (1 carat = 200 mg) Kohinoor diamond is 186 carats and Pitt diamond is 136 carats
- 10.It is insoluble in any solvent

11. It is stable in vacuum up to 1500 $^{\rm 0}{\rm C}$ but at 1800 $^{\rm 0}{\rm C}-2000$ $^{\rm 0}{\rm C}$ it changes in to graphite.

Uses:

- 1. Diamonds reflect and refract the incident radiations and so are used in jewellery
- 2. Dies are made up of diamond. Dies are used to draw fine wires
- 3. Diamonds are hard enough to be used in cutting glass and for sharpening of instruments

Graphite:

Graphite has a two dimensional, layered structure. Layers are held by van der Waals forces and the bond distance between two layers is 3.35 A^0 . Carbon atoms, in graphite, form hexagonal rings. Each carbon undergoes sp² hybridization. A carbon atom forms three covalent bonds with three separate carbons. The fourth unhybridized orbital is a pure p-orbital having an unpaired electron. This electron participates in π bond formation. So graphite has a collection of π - electrons, because of these π electrons graphite is good conductor. The C – C bond length in graphite (in hexagonal ring) is 1.42 A⁰. Because of these covalent bonds in the ring, graphite has a high m.p. (3500 °C). The electrons are delocalized over the whole sheet. It cleaves easily between the layers, so soft and slippery.

Structure of graphite

Uses:

- 1. Used as a lubricant due to its soft and slippery nature and can be cleaved between the layers.
- 2. Used as a electrode in electric furnaces
- 3. Used in electrotyping and electro printing
- 4. Used as a pencil lead
- 5. Used in the preparation of refractory crucibles.

Preparation:

It is prepared by **Acheson's method**. The carbon electrodes in an electric furnace or joined by carbon chains. In the furnace, a mixture of coke and sand is taken and heated to 3450 °C. Silicon carbide is formed which decomposes to give silicon and graphite. Silicon vaporizes and graphite is left in the furnace.

 $3 \text{ C} + \text{SiO}_2 \xrightarrow{3450 \,^{\circ}\text{C}} \text{SiC} + 2 \text{ CO} \uparrow$ SiC \rightarrow Si + C (Graphite)

Properties:

It is soft, greasy, dark grayish coloured crystalline solid. Its density is 2.5 g mL⁻¹. It is good conductor of electricity and its conductivity increases with temperature. It leaves a black mark on paper. It is called **black lead** or **pumbago**.

Graphite is thermodynamically more stable than diamond and its free energy of formation is 1.9 kJ less than that of diamond.

Fullerenes:

Fullerenes are the third kind carbon allotrope. Fullerenes are made by the heating of graphite in an electric arc in the presence of inert gas such as helium or argon. They are cage like molecules. Fullerenes are the only pure form of carbon because they have smooth structure without having free bonds. The sooty material formed by condensation of vaporized C_n molecules consists of mainly C_{60} with smaller quantity of C_{70} and traces of fullerenes consisting of even number of carbon atoms up to 350 or above. C_{60} molecule has a shape like soccer ball and called **Buckminsterfullerene**.

Structure of fullerene

It consists of 20 six member rings and 12 five member rings. A six membered ring is fused with six or five membered rings but a five membered ring can only fuse with six membered rings. All the carbon atoms are equal and they undergo sp² hybridization. Each carbon atom forms three sigma bonds with other three carbon atoms. The remaining electron at each carbon is delocalized in molecular orbitals. This, in turn gives aromatic character to the molecule. It contains both

single and double bonds with C – C distances of 143.5 pm and 138.3 pm. Spherical fullerenes are also called **Bucky balls**.

It is very important to know that graphite is thermodynamically most stable allotrope of carbon and, therefore, $\Delta_f H^-$ of graphite is taken as zero. $\Delta_f H^-$ values of diamond and fullerene (C₆₀) are 1.90 and 38.1 kJ mol⁻¹ respectively.

Uses of carbon:

- 1. Mainly C is used as a reducing agent
- 2. In the manufacturing of CS₂

Amorphous forms of carbon: coal, charcoal, soot (or) lamp black:

Coal:

It is the crude form of carbon. It is formed in nature as a result of slow decomposition of vegetable matter under the influence of heat, pressure and limited supply of air. The common variety of coal is bituminoucoal. It is hard like stone and burns with smoky flame. The superior quality is anthracite which burns with non-smoky flame. This is formed by the carbonization of wood in stages.

Uses:

- 1. Coal is mainly used as a fuel,
- 2. Coal is mainly used for the manufacture of coal gas, coal tar and coke.
- 3. Coal is mainly used in the manufacture of synthetic petrol.

Charcoal:

This form of carbon is obtained by burning wood. Cellulose or any other carbonaceous matter in a limited supply of air. Charcoal is of various forms such as wood charcoal, sugar charcoal, coconut charcoal etc. Wood charcoal is used as an adsorbent. When charcoal is given a special treatment in order to increase its

adsorption capacity, it results in activated charcoal and the process of treatment is called as activation.

Uses:

- 1. It is used in removing offensive odour from air in the air conditioning process.
- 2. In making filters in cigarettes to remove vapours of nicotine.
- 3. In removing fusel oil from crude oil from crude spirit.
- 4. In decolorizing sugar syrup and refining process.

Lamp black or carbon black or soot:

It is obtained by burning substances rich in carbon content such as kerosene, petroleum, turpentine oil, acetylene etc., in a limited supply of air. These substances yield a large amount of smoke (soot) which is passed into chambers having wet blankets. The soot collected on these blankets is called lampblack.

Uses:

- 1. It is used for making printing inks, black paints, boot polishes and ribbons of type writers.
- 2. It used as a filler in making rubber tyres.

Assignment questions:

- 1. Define an allotrope? Sketch the structures of any two crystalline allotropes of carbon.
- 2. What is the impact of structure on physical properties of two allotropes?
- 3. What are the allotropes of amorphous carbon? Give a brief account of each of them.
- 4. Give reasons for the following:
 - a. Graphite is used as lubricant

b. Diamond is used as an abrasive

Self check questions:

- 1. A crystalline form of carbon _____
 - a. Coal
 - b. Graphite
 - c. Diamond
 - d. Both b) and c)

Solution: d)

- 2. In diamond, carbon undergoes _____ hybridization.
 - a. sp^2
 - b. sp
 - c. sp^3
 - d. sp³d

Solution: c)

- 3. Dies are made up of _____
 - a. Graphite
 - b. Coal
 - c. Diamond
 - d. Fullerene

Solution: c)

- 4. _____ has a two dimensional layer structure
 - a. Graphite
 - b. Diamond
 - c. Fullerene
 - d. Charcoal

Solution: a)

- 5. Free energy of formation of graphite is ______ than diamond
 - a. 1.9 kJ greater than that of diamond
 - b. 1.9 kJ lesser than that of diamond
 - c. equal to that of diamond
 - d. either more or less than that of diamond.

Solution: b)

- 6. Spherical fullerenes are also called as _____
 - a. Buckminsterfullerene
 - b. Anthracite
 - c. Bucky balls
 - d. Both a) and c)

Solution: d)

- 7. _____ is used for making ribbons of type writers.
 - a. Coal
 - b. Coke
 - c. Char coal
 - d. Lamp black

Solution: d)

Example set:

- 1. A rigid three-dimensional network of carbon atoms is present in _____
 - a. Graphite
 - b. Diamond
 - c. Fullerene
 - d. All

Solution: b)

- 2. Graphite is _____
 - a. A good conductor of heat
 - b. Softer than diamond
 - c. An amorphous variety of carbon
 - d. Both a) and b)

Solution: d)

- 3. Which of the following is a chemically inactive allotrope of carbon?
 - a. Diamond
 - b. Coal
 - c. Charcoal
 - d. Animal charcoal

Solution: a)

- 4. Bucky ball is _____
 - a. an allotrope of carbon
 - b. referred as C_{60}
 - c. having sp² hybridized carbon
 - d. All

Solution: d)

5. Write the properties of diamond.

Solution:

- a. Very hard substance, difficult to break due to extended covalent bonds
- b. High melting point 3927 ^oC
- c. C C bond energy is very high. 348 kJ mol⁻¹
- d. Non conductors due to the lack of lone electrons or electron pairs
- e. C C bond length is 1.54 A^0 or 0.154 nm.
- f. \angle CCC bond angle $109^{\circ}28^{\circ}$
- g. Transparent to x- rays

- h. High refractive index
- i. The value of diamond is measured in carats. (1 carat = 200 mg) Kohinoor diamond is 186 carats and Pitt diamond is 136 carats
- j. It is insoluble in any solvent
- k. It is stable in vacuum up to1500 $^{\circ}$ C but at 1800 $^{\circ}$ C 2000 $^{\circ}$ C it changes in to graphite.
- 6. Give a brief account of the uses of coal, charcoal, lamp black

Solution:

Coal:

It is the crude form of carbon. It has been formed in nature as a result of slow decomposition of vegetable matter under the influence of heat, pressure and limited supply of air.

Uses:

- a. Coal is mainly used as a fuel,
- b. Coal is mainly used for the manufacture of coal gas, coal tar and coke.
- c. Coal is mainly used in the manufacture of synthetic petrol.

Charcoal:

This form of carbon is obtained by burning wood, cellulose or any other carbon form occur matter in a limited supply of air.

Uses:

- a. It is used in removing offensive odour from air in the air conditioning process.
- b. In making filters in cigarettes to remove vapours of nicotine.
- c. In removing fusel oil from crude oil from crude spirit.

d. In decolorizing sugar syrup and refining process.

Lamp black or carbon black or soot:

It is obtained by burning substances rich in carbon content such as kerosene, petroleum, turpentine oil, acetylene etc., in a limited supply of air.

Uses:

- a. It is used for making printing inks, black paints, boot polishes and ribbons of type writers.
- b. It used as a filler in making rubber tyres.

Problem set:

- 1. Diamond is hard, because _____
 - a. All the four valence electrons of C are bonded to other carbon atoms by covalent bonds.
 - b. It is giant molecule
 - c. It can not be burnt
 - d. C C bond length is maximum

Solution: a)

- 2. Graphite is a good conductor of electricity because it contains
 - a. Mobile electrons
 - b. Strong C C bonds
 - c. sp^2 hybridized C
 - d. All the above

Solution: a)

- 3. Buckminsterfullerene contains ______ six membered rings and ______ five membered rings.
 - a. 12 & 12

b. 20 & 20
c. 20 & 12
d. 12 & 20

Solution: c)

- 4. $\Delta_f H^-$ of graphite is taken as _____
 - a. 1.98 kJ
 - b. 38.1 kJ
 - c. 3.81 kJ
 - d. Zero

Solution: d)

5. Diamond is covalent, yet it has high melting point. Why?

Solution:

Diamond has three-dimensional network involving strong C - C bonds. These are very difficult to break and, therefore has high melting point.

6. Diamond is very hard, while graphite is soft. Explain.

Solution:

Diamond has giant three-dimensional polymeric structure in which each carbon is sp^3 hybridized and linked to four other carbon atoms. This structure makes diamond hardest. Graphite possesses layer structure in which each carbon atom is sp^2 hybridized. There is wide separation between various layers. One layer can slide over easily on the other. This makes graphite soft in nature.

Exercise questions:

- 1. Which allotropic form of 'C' has the lowest energy?
- 2. Explain the difference in density between diamond and graphite
- 3. Explain the difference in the electrical conductivities of diamond and graphite
- 4. How do you convert graphite into diamond?

Solutions:

- 1. Graphite has the lowest energy. Graphite has three σ bonds and one π bond. Where as in diamond there are four σ bonds.
- 2. Graphite is composed of flat two dimensional sheets of carbon atoms, it possesses layer structure. The distance between layers is 3.35 A^0 . The bonding between layers is weak and cleaves easily. The wide spacing of sheets in graphite also means that the atoms do not pack together to fill space very effectively. Thus the density of graphite (2.22 g cm⁻³) is lower than that of diamond. (3.51 g cm^{-3})
- Graphite has electrical conductivity, while diamond is an insulator. Because in diamond each 'C' atom is tetrahedrally surrounded by four other 'C' atoms. i.e. 4 valence electrons are involved in forming four σ bonds. In graphite only three of the valence electrons of each carbon atom are involved in forming three σ bonds. The fourth electron forms a π bond. The π electrons are delocalized over the whole sheet. They are mobile. Hence graphite conducts electricity.
- 4. Graphite is thermodynamically more stable than diamond and its free energy of formation s 1.9 kJ less than diamond.

